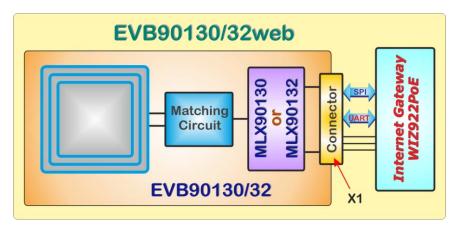


Table of Contents


1.	General Description	2
1.1	Connector X1 (SPI/ UART Communication)	2
2.	MLX90130 / MLX90132 Pin Definitions & Descriptions	3
2.1	MLX90130 / MLX90132 simplified Block Diagram	3
3.	RFID90130/32 Circuit Diagram with PCB Antenna	4
4.	Component Arrangement RFID90130/32 Board with PCB Antenna	4
5.	Board Component Values from RFID90130/32 Board	5
6.	Assembly Options	6
7.	Power Supply Variants MLX90130/32 Optionally for 3.3V or 5V	6
7.1	Connector V1 (Supply Voltage)	6
7.2	Connector X2 (Optionally for Supply Voltage)	6
8.	RFID Reader Board and Internet Gateway-Module	7
8.1	Block Diagram WIZ922PoE	7
8.2	Reference List RFID90130/32 Reader Board to Internet Gateway-Module WIZ922PoE.	7
9.	Disclaimer	8

1. General Description

The EVB90130/32web consists of two parts:

- The EVB90130/32
- The Internet-Gateway-Module WIZ922PoE

The RFID/NFC Reader Board is a universal HF frontend for mobile and stationary 13.56MHz reading devices. The MLX90130 or MLX90132 RFID-Transceiver IC from Melexis used here supports all commonly used standards like:

- ISO/IEC 18092 (NFC, MLX90132 only)
- ISO/IEC 14443A und B
- ISO/IEC 15693
- ISO/IEC 18000-3 mode 1

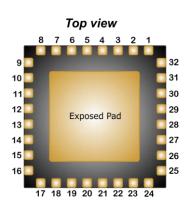
The MLX90130/32 is a 13.56MHz, fully integrated, multi-protocol RFID/NFC transceiver IC. It has been designed to handle sub-carrier frequencies from 106 to 848 kHz and baud rates up to 848kbit/s. The dual driver architecture of the MLX90132 requires minimal external support components.

The MLX90132 embeds tag emulation functionality for NFC support. Enhanced tag and field detection capabilities provide significant power consumption reduction in RFID reader configuration and in NFC mode.

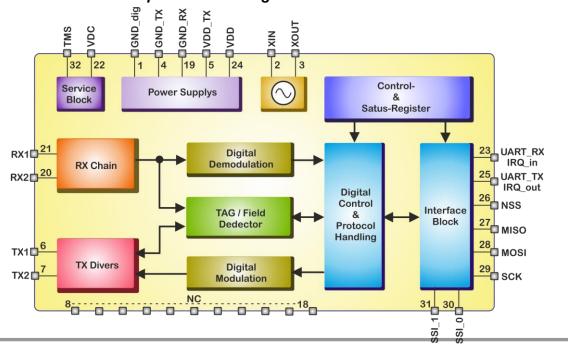
The digital section of the MLX90130/32 handles the low protocol layers from API to physical layer using advanced bit and frame encoding/decoding functions. It contains a digital demodulator based on sub-carrier detection and a programmable bit/symbol encoder/decoder. It also encodes and decodes the start and stop bits, parity bits, extra guard time (EGT), start and end of frame (SOF/EOF) and CRC. Its 528 bytes buffer allows buffering of an entire RFID frame.

The EVB90130/32 allows an operation with the integrated PCB antenna and can be controlled by any Microcontroller via the standard SPI or UART interface. The EVB90130/32web consists in addition to the EVB90130/32 of a WIZnet WIZ922PoE module with an MCU and preprogrammed Web frontend for an easy plug-and-play start to help implement a RFID- or a fully functional NFC-reader. Free ANSI-C code is available for software support.

1.1 Connector X1 (SPI/ UART Communication)

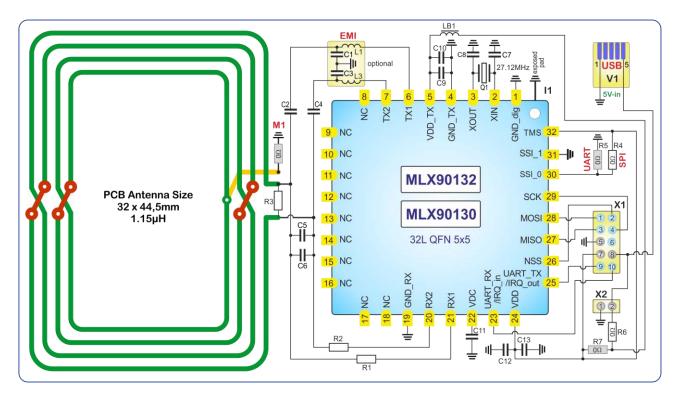

X1 connects to the WIZnet internet module WIZ922PoE. Here, the internal 3.3V regulator of the WIZ922 Module is used.

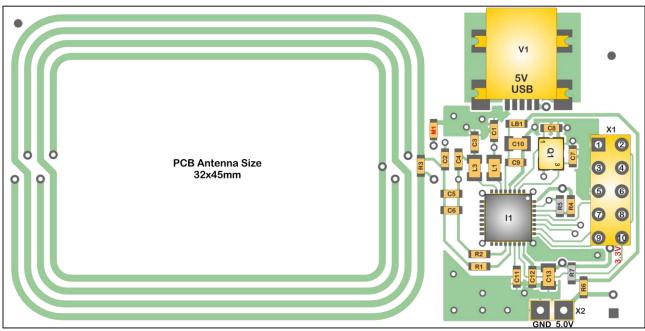
Pin	Name	Description	Mode	
1	MOSI	SPI Data Input		
2	NSS	SPI Slave Select, low active	SPI Mode	
3	MISO	SPI Data Output	SFI WOULE	
4	SCK	SPI Clock		
5	GND	Ground		
6	NC	NC	Source	
7	VDD3V3	3.3V Regulator-output (WIZnet)	Source	
8	VDD	Main power Supply voltage 5V (PoE out)		
9	UART_TX_IRQ_out	UART Transmit pin /Interrupt output	UART	
10	UART_RX_IRQ_in	UART Receive pin /Interrupt input	Mode	


2. MLX90130 / MLX90132 Pin Definitions & Descriptions

Pin	Pin Name	I/O Type	Description
1	GND_dig	Supply	Digital Ground
2	XIN	Analog	Crystal oscillator input
3	XOUT	Analog	Crystal oscillator output
4	GND_TX	Supply	Ground TX-Drivers
5	VDD_TX	Supply	Power supply TX-Drivers
6	TX1	Analog	Driver output_1
7	TX2	Analog	Driver output_2
8	NC		Not connected
9-16	NC		Not connected
17	NC		Not connected
18	NC		Not connected
19	GND_RX	Supply	Analog Ground
20	RX2	Analog	Receiver input_2
21	RX1	Analog	Receiver input_1
22	VDC	Analog	Melexis Reserved
23	UART_RX/IRQ_in	Digital I	UART Receive pin / Interrupt input
24	VDD	Supply	Main Power Supply
25	UART_TX/IRQ_out	Digital O	UART Transmit pin / Interrupt output
26	NSS	Digital I	SPI Slave Select
27	MISO	Digital O	SPI data output
28	MOSI	Digital I	SPI data input
29	SCK	Digital I	SPI clock
30	SS_0	Digital I	Select for Serial comm. interface
31	SS_1	Digital I	Must be set to GND
32	TMS *	Digital I	Must be set to VDD
EXP		Expos. Pad	Must be set to GND

The device is packaged in a 32 pin lead free QFN package


2.1 MLX90130 / MLX90132 simplified Block Diagram


^{*}Versions MLX90130/132-AEA have an internal pull up and the TMS is NC.

3. RFID90130/32 Circuit Diagram with PCB Antenna

4. Component Arrangement RFID90130/32 Board with PCB Antenna

Board size is 35mm x 70mm

5. Board Component Values from RFID90130/32 Board

Part	Size	Value	Tol.	Description		
Fait	Size	MLX90130/MLX90132	101.	Description		
I1	32L QFN 5x5	MLX90130		13.56MHz RFID Transceiver, sales Dacom		
C1	0603	220 pF ¹⁾	±5%	Antenna matching, filter capacitors (EM FilterI)		
C2	0603	100 pF	±5%	Antenna matching, serial resonance capacitor		
C3	0603	220 pF ¹⁾	±5%	Antenna matching, filter capacitors (EMI Filter)		
C4	0603	100 pF	±5%	Antenna matching serial resonance capacitor		
C5	0603	10 pF	±5%	Antenna matching, parallel resonance capacitor		
C6	0603	47 pF	±5%	Antenna matching, parallel resonance capacitor		
C7	0603	12 pF	±5%	27.12MHz crystal load capacitors		
C8	0603	12 pF	±5%	27.12MHz crystal load capacitors		
C9	0603	100 nF	±10%	Ceramic decoupling capacitor		
C10	0805	4.7 μF	±20%	Ceramic decoupling capacitor GRM21-series		
C11	0603	47 pF	±5%	Ceramic decoupling capacitor		
C12	0603	100 nF	±10%	Ceramic decoupling capacitor		
C13	0805	10 μF	±20%	Ceramic decoupling capacitor GRM21		
R1	0603	560 Ω	±5%	Antenna matching network, feedback Rx resistors		
R2	0603	560 Ω	±5%	Antenna matching network, feedback Rx resistors		
R3	0603	2 kΩ ⁶⁾	±5%	Antenna matching network, resonance damping resistor		
R4	0603	0 Ω ³⁾		The serial communication interface is programed on SPI		
R5	0603	0 Ω ³⁾		Optionally, serial communication interface is programed on UART		
R6	0603	0 Ω ⁵⁾		Power Supply for TX-Diver is 5V source		
R7	0603	0 Ω ⁴⁾		Optionally, Power Supply is 3.3V source for MLX90130/32		
L1	0805	0,56 μH ²⁾	±10%	Antenna matching, filter inductors (EMI Filter) LQM21N Murata		
L3	0805	0,56 μH ²⁾	±10%	Antenna matching, filter inductors (EMI Filter) LQM21N Murata		
LB1	0603	BLM18AG601		EMI filter, impedance = 600Ω, current = 500mA		
M1	0603	nc		Test point for antenna matching tuning		
Q1	SMD 3.2x2.5 SMD 2.5x2.0	27.1200 MHz	±30ppm	Fundamental-mode crystal, Petermann Series SMD03025/4 or equivalent Part		
X1		10-polig		Interface-Connector, 2.54mm, 2-reihig		
X2		2-polig		Optionally VDD-Connector, 2.54mm, 1-reihig		
V1	SMD	5-polig ⁷⁾		Mini USB-B Connector: CONNFLY DS1104- BN0SR (musb-g5p to WIZnet), Molex 0548190572 (mx54819 to WIZnet) or equivalent Part		

Note: 1) to 7), according to section 6.

6. Assembly Options

1) C1/C3 ⇒ Optionally EMI Filter 220-270pF

Without EMI filters C1/C3 is = n. c.

2) L1/L3 \Rightarrow Optionally EMI Filter 0.22 μ H -0,56 μ H LQM21N Series Murata

Without EMI filters L1/L3 is = 0 Ohms

3) R4/R5 \Rightarrow Standard is R4 \Rightarrow SPI Mode Optionally \Rightarrow R5 UART Mode,

 $\begin{array}{c|ccc} \textbf{R4} & \textbf{R5} & \textbf{Description} \\ \hline \textbf{0} \ \Omega & \textbf{off} & \textbf{SPI Mode} \\ \hline \textbf{off} & \textbf{0} \ \Omega & \textbf{UART Mode} \\ \end{array}$

4) R7 \Rightarrow Optionally \Rightarrow MLX90130/32 and TX-Diver in 3,3V Mode

5) R6 \Rightarrow Standard is Power Supply for TX-Diver = 5V source

6) R3 \Rightarrow Optionally \Rightarrow Resonance Damping Resistor 2-10 k Ω

7) V1 ⇒ Standard is Mini USB Connector for Power Supply source

7. Power Supply Variants MLX90130/32 Optionally for 3.3V or 5V

The MLX90130/32 can be supplied by 3.3V or 5V. Here 3.3V is used provided by the WIZ922PoE-module, thus R7 (VDD) is not connected on the EVB and R6 (5V-in) is connected on the board.

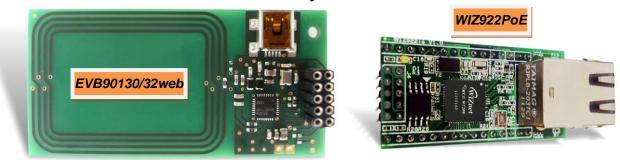
Table 5 summarizes the different supply options. The first two are used with power of Ethernet, the other three use X2 or V1 as power supplies (as described in 5.3.1 and 5.3.2) Only the first of these options can be used in conjunction with the WIZ922.

Part Source TX			Connector				Can the WIZ922 be			
T alt		Driver		VDD	X1			X2 / V1		used?
R6	R7	R7 Voltage			5	7	8	1	2	If yes is PoE used?
0 Ω	off	5V		3.3V	≟	3.3V	4.3V PoE	≟	_	WIZ922 Yes, PoE Yes
off	0 Ω		3.3V	3.3V	-	3.3V	4.3V PoE	⊣ ⊪	_	WIZ922 Yes, PoE Yes
0 Ω	Off	5V		3.3V	-Ji	3.3V	5V	- <u> </u>	5V	WIZ922 Yes, PoE No
0 Ω	0 Ω		3.3V	3.3V	- -	3.3V	3.3V	-	3.3V	WIZ922 No
0 Ω	0 Ω	5V		5V	-∤⊪	5V	5V	1	5V	WIZ922 No

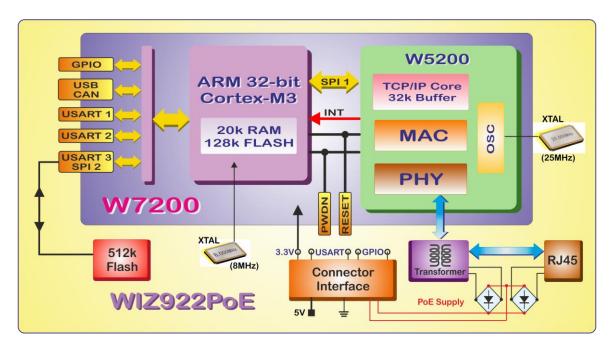
7.1 Connector V1 (Supply Voltage)

You only need to connect 5V supply to Pin 5 and to Pin1 GND.

Pin	Name	Description / USB Connector		
1 GND Ground		Ground		
5 VDD		Main power Supply 5V		


7.2 Connector X2 (Optionally for Supply Voltage)

You only need to connect 5V or 3.3V supply to Pin 2 and to Pin1 GND.


Pin	Name	Description / USB Connector		
1 GND		Ground		
2 VDD		Main power Supply 5V or 3.3V		

8. RFID Reader Board and Internet Gateway-Module

8.1 Block Diagram WIZ922PoE

8.2 Reference List RFID90130/32 Reader Board to Internet Gateway-Module WIZ922PoE

X1	Reader E	Bord RFID90130/32	Interface WIZ922PoE		
Pin	Pin Name	Description	Pin Name	Description	
1	MOSI	SPI data input	P15_SP12_MOSI	MOSI	
2	NSS	SPI Slave Select, low active	PB11	SPI Slave Select	
3	MISO	SPI Data Output	PB14_SP12_MISO	MISO	
4	SCK	SPI Clock	PB13_SP12_SCK	SCK	
5	GND	Ground	GND	GND	
6	NC	NC	nRESET	Reset, low active	
7	VDD3 3.3V Regulator-output		VDD3V3	3.3V-Regulator out	
8	VDD Main power Supply voltage		VDD5V	5V-input or PoE-out	
9	UART_TX_IRQ_out	UART Transmit pin /Interrupt output	PA10_ UART1_RXIN	UART Receive pin	
10	UART_RX_IRQ_in	UART Receive pin /Interrupt input	PA9_ UART1_TXOUT	UART Transmit pin	

9. Disclaimer

Dacom West GmbH (Dacom) sells commodity on basis and in scope of Dacom General Terms and Conditions of Supply and Payment. We are not able to recognize opposing terms and conditions.

As a trader Dacom makes no express warranties and is not liable for injuries, damages and losses under a duty of implied or statutory warranties, if there is no fault on our side. This applies to all product specifications, all product information and patent infringements.

All information provided by Dacom is believed to be correct. But please take into consideration, that Dacom as your dealer is not producer of the delivered items. Therefore Dacom shall neither be liable to the product addressee nor to any third party, with the exception of a statutory strict liability; for any damages whatsoever if there is no willful or negligent act on side of Dacom. This applies to damages arising out of faulty products as well as to damages arising out of faulty information, for example in data sheets or catalogues. By rendering technical services we are liable for losses caused by us in case of intentional and reckless conduct.

Before designing products delivered by Dacom into a system we strongly recommend to consult Dacom or the manufacturer.

Before using any information or products provided by Dacom in a system we strongly recommend to consult Dacom or the manufacturer. This is particularly applicable, if the safety of the product application is concerned, i.e. if the danger of bodily injuries, property damages or financial losses cannot be excluded with sufficient certainty.

In scope of a Yes-No-Don't-know-system we would be glad to advise you in terms of application. Accordingly, you are requested to verify that our data sheets and other publications you possess are current and up to date.

The user agrees to this disclaimer by using the information including this disclaimer